
1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3076687, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL., NO., APR 2021 1

Offloading Tasks with Dependency and Service
Caching in Mobile Edge Computing

Gongming Zhao, *Hongli Xu, Member, IEEE, Yangming Zhao, Chunming Qiao, Fellow, IEEE,
Liusheng Huang, Member, IEEE,

Abstract—In Mobile Edge Computing (MEC), many tasks require specific service support for execution and in addition, have a
dependent order of execution among the tasks. However, previous works often ignore the impact of having limited services cached at
the edge nodes on (dependent) task offloading, thus may lead to an infeasible offloading decision or a longer completion time. To
bridge the gap, this paper studies how to efficiently offload dependent tasks to edge nodes with limited (and predetermined) service
caching. We formally define the problem of offloading dependent tasks with service caching (ODT-SC), and prove that there exists no
algorithm with constant approximation for this hard problem. Then, we design an efficient convex programming based algorithm (CP) to
solve this problem. Moreover, we study a special case with a homogeneous MEC and propose a favorite successor based algorithm
(FS) to solve this special case with a competitive ratio of O(1). Extensive simulation results using Google data traces show that our
proposed algorithms can significantly reduce applications’ completion time by about 21-47% compared with other alternatives.

Index Terms—Mobile Edge Computing, Task Offloading, Service Caching, Dependency, Approximation.

F

1 INTRODUCTION

The Internet of Things and widespread use of mobile devices
are driving the development of many delay-sensitive and resource-
intensive applications, such as virtual/augmented reality, face
recognition and data stream processing [2] [3] [4]. Currently, these
applications are processed or performed on either mobile devices
or on a cloud platform. On one hand, mobile devices have too little
computational resource for many applications [5]. On the other
hand, running resource-intensive applications on a cloud platform
often requires massive data be transferred between mobile devices
and remote servers in the cloud, leading to unpredictable com-
munication delay [6] [7]. As a result, Mobile Edge Computing
(MEC) has emerged as a promising solution to overcome the above
disadvantages [8] [9] [10] [11] [12].

However, there still exist many challenges in MEC. We take
the face recognition application as an example. Basically, a face
recognition application can be divided into five dependent tasks:
object acquisition, face detection, preprocessing, feature extraction
and classification [13]. When these tasks are offloaded onto edge
nodes, we need to take the following factors into considerations.
• Service caching. Task execution may require the support of

specific services. That means tasks can only be offloaded

• Some preliminary results of this paper were published in the Proceedings
of IEEE INFOCOM 2020 [1].

• G. Zhao, *H. Xu (corresponding author) and L. Huang are with the School
of Computer Science and Technology, University of Science and Technol-
ogy of China, Hefei, Anhui, China, 230027, and also with Suzhou Institute
for Advanced Study, University of Science and Technology of China,
Suzhou, Jiangsu, China, 215123. E-mail: zgm1993@mail.ustc.edu.cn,
xuhongli@ustc.edu.cn, lshuang@ustc.edu.cn.

• Y. Zhao and C. Qiao are with the Department of Computer Science
& Engineering, University at Buffalo, Buffalo, NY, USA, 16260. E-
mail:yangming@buffalo.edu, qiao@computer.org.

onto edge nodes configured with corresponding services. For
example, tasks “feature extraction” can only be offloaded
onto the edge nodes configured with trained machine learning
model.

• Dependency. There may be dependencies between tasks. For
example, the output of task “feature extraction” is the input
of task “classification”. Thus, task “classification” can start
only if task “feature extraction” has completed.

Actually, both service caching and dependency will impact
the feasibility and performance of task offloading [12]. If we do
not consider service caching or dependency when offloading these
tasks, the applications may not be performed successfully [3] [14].
Existing works on service caching often focus on the problem
of joint optimization of service placement and task offloading in
MEC [3] [5] [15] [16]. In fact, service placement/update may incur
higher operation cost than task execution, and hurt the system
stability [16]. For example, object database and trained machine
learning models require a non-trivial amount of data and are
time-consuming if we migrate these services [16]. Thus, service
placement often occurs at long-term time scale. If we jointly
update the service placement and task offloading at long-term time
scale (e.g., [5] [15]), due to task dynamics and uncertainty [17]
[18], the offloading solutions may lead to computation congestion
on some edge nodes. Different from the previous works [3]
[5] [15] [16], we assume that services have been placed/cached
on edge nodes according to the existing methods such as [5]
[15]. We will consider the impact of service caching on the
applications’ performance (e.g., the completion time) of dynamic
task offloading.

Due to the limited memory resource, only a subset of services
can be cached on an edge node [2]. The status of service caching

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:42:32 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3076687, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL., NO., APR 2021 2

1 2

3

 Task Set

Edge

Node1

Edge

Node2

1 2

3

Edge

Node1

Edge

Node2

1

3 2

Optimal offloading

without considering

service caching

Optimal offloading if edge node 1

configured services for task 1 and edge

node 2 configured services for task 2

Fig. 1: A Motivation Example. We assume that three tasks need to be
offloaded as illustrated in the top plot. The optimal offloading solution
is shown in the left plot without considering service caching. The right
plot is the offloading solution if only edge node 1 caches services for
task 1 and only edge node 2 caches services for task 2.

(i.e., where the services are hosted) will influence the decisions
of task offloading. We give an example as shown in Fig. 1. Three
tasks need to be offloaded onto two edge nodes. Task 1 must
finish and send corresponding data to task 2 before task 2 can
start. Task 3 is independent of tasks 1 and 2. For simplicity, the
processing delay for any task on any node edge is set as 1 and
the communication delay is set as 0.5 for data transmission from
task 1 to task 2 if these two tasks are offloaded onto different edge
nodes. If we do not consider the constraint of service caching, the
offloading solution with the shortest completion time is shown in
the left plot of Fig. 1 and the total task completion time (referred
to as makespan hereafter) is 2. However, if only edge node 1
caches required services for task 1 and only edge node 2 caches
required services for task 2, the offloading strategy of the left plot
is infeasible/inefficient due to edge node 1 does not cache the
services required by task 2. In this case, the feasible solution is
shown in the right plot of Fig. 1 and the makespan is 2.5. Thus, this
paper focuses on offloading dependent tasks with service caching.

We should note that most of the previous work that considered
task dependency did not consider the impact of service caching
on the task offloading [14] [19] [20], and thus can not be directly
applied to the case studied in this work. Work [21] only considered
a single edge node that assists a user in executing a sequence of
dependent tasks with service caching, so it is difficult to apply to
the scenarios with multiple edge nodes. The most related work is
GenDoc [22], which jointly considered the problem of dependent
task offloading and service caching placement with the objective
of application completion time minimization. However, GenDoc
does not consider the computing resource constraints on edge
nodes when offloading tasks to edge nodes. In fact, mobile edge
nodes are resource-sensitive and GenDoc may cause irrational use
of limited computing resources.

The main contributions of this paper are as follows:

1) We formally define the problem of offloading dependent tasks
in MEC while considering service caching (ODT-SC), and

prove its NP-hardness. We also analyze that the ODT-SC
problem cannot be solved using a constant approximation
algorithm in polynomial time.

2) We present a convex programming based algorithm, called
CP, for the ODT-SC problem (e.g., for heterogeneous scenar-
ios). CP transforms this problem into a convex optimization
problem and offloads tasks according to the solution of this
convex optimization.

3) We design a favorite successor based algorithm, called FS, for
the special case (i.e., homogeneous edge nodes), and prove
that FS can achieve an approximation ratio of O(1).

4) We conduct extensive simulations using real-world applica-
tions (from [23]) and data traces (from [24]) to show that CP
and FS help reduce applications’ completion time by about
21-47% compared with other alternatives.

The rest of this paper is organized as follows. Section 2
discusses the related works. Section 3 defines the problem of
offloading dependent tasks in MEC while considering service
caching and proves that there exists no approximation algorithm
with a constant factor for this hard problem. In Section 4, we
propose an efficient convex programming based algorithm to solve
this problem, called CP. Section 5 focuses on the special case of
homogeneous edge nodes and proposes an approximation algo-
rithm with bounded approximation ratio. The simulation results
are presented in Section 6. We conclude the paper in Section 7.

2 RELATED WORKS

The emergence of resource-consuming and delay-sensitive mo-
bile applications, such as 3-D games, augmented reality, and
autonomous driving, has spurred a growing need for low-delay
access to computing resources [8]. To address these challenges,
mobile edge computing (MEC), envisioned as a new computing
paradigm, has received an increasing amount of attentions in
recent years [2] [8] [9] [10] [11].

In MEC, task offloading is the main research issue in re-
cent years due to its necessarity and importance [8]. Mao et
al. [10] proposed a low-complexity algorithm to minimize the
weighted makespan of multiple independent tasks through jointly
optimization of tasks offloading and resources allocation. Tong
et al. [11] proposed an edge computing architecture according
to the distance between the edge nodes and users, and designed
an optimal offloading scheme for minimizing the makespan by
using a workload placement algorithm. Many works also devoted
to minimizing the overall cost of task offloading [25] [26]. Neto
et al. [25] proposed a lightweight mobile computation offloading
framework to minimize overall execution overhead. Huang et
al. [26] designed a Deep-Q Network based task offloading and
resource allocation algorithm to minimize the overall offloading
cost in terms of computation cost, energy cost, and delay cost.

The above works assumed that the edge nodes could process
any tasks in the system. However, as the mobile applications be-
come increasingly complicated and require the support of various
services, the tasks can be processed by these edge nodes with the
required services. As a result, since edge nodes cannot be equipped
with all services due to limited memory and computing resource

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:42:32 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3076687, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL., NO., APR 2021 3

constraints [3] [16], these works can not be applied directly to
scenarios with service-aware tasks. This challenge can be solved
by considering service caching conditions. Existing works on
service caching often focus on the problem of service placement
or joint optimization of service placement and task offloading [3]
[5] [15] [16]. In fact, service placement/update may incur higher
operation cost than task execution, and hurt the system stability
[16]. Thus, service placement often occurs at long-term time
scale. On the contrary, tasks offloading often occurs at short-term
time scale due to task dynamics and uncertainties [17] [18]. That
means, making placement/offloading decisions simultaneously
may decrease system stability and increase operational cost. Based
on this consideration, Farhadi et al. [16] separated the time scales
of service placement and request scheduling, and proposed a two-
time-scale solution for joint optimization of service placement and
request scheduling under storage, communication, computation,
and budget constraints.

All aforementioned works focus on offloading independent
tasks. As modern applications in MEC become increasingly com-
plex, a mobile application may consist of a number of dependent
tasks. Thus, offloading dependent tasks is necessary for many
practical applications in MEC. Since it is complex by considering
precedence constraints and data transfer requirement in MEC, only
some works focus on the dependent task offloading problem in
MEC such as [14] [19] [20] [21]. Sundar et al. [14] proposed
a heuristic algorithm to schedule dependent tasks with the ob-
jective of overall application execution cost minimization while
considering application completion deadline constraints. Hermes
et al. [19] designed a polynomial time approximation algorithm
for offloading dependent tasks to minimize the makespan under
resource constraints. Fan et al. [20] studied the dependent task
offloading problem to minimize the overall cost of all applications
with each application’s completion time constraints. However,
these works do not consider the service caching constraints at
the same time.

In fact, many tasks may pose a dependent execution order and
in addition, require service support for execution. Thus, consider-
ing both service caching and tasks dependency is significant for
task offloading. To the best of our knowledge, only a few works
considered both two constraints. GenDoc [22] jointly considered
the problem of dependent task offloading and service caching
placement with the objective of application completion time
minimization. However, GenDoc does not consider the processing
resource constraints, which may cause irrational use of limited
processing resources.

3 PRELIMINARIES AND PROBLEM DEFINITION

In this section, we first introduce the system model, including
task dependency model and network model. We then formally
define the dependent tasks offloading with service caching (ODT-
SC) problem, and prove there exists no constant approximation
algorithm for this problem.

3.1 System Model
Task Dependency Model: We assume that one or several applica-
tion(s) (e.g., face recognition, virtual reality) need to be executed

at some point in time. These application(s) can be divided into
many tasks, each of which can only be executed by one edge
node. For each local device that contains task(s), we insert a
dummy task as the precedent task of all tasks on this local device.
The dummy task must be executed on this local device and the
execution time is zero. Note that, task execution may require the
support of various resources (e.g., storage, CPU, network I/O) and
corresponding services (e.g., machine learning model) [27]. We
can restrict the required services so that the dummy task can only
be executed on the local device where it is located.

We use V = {v1, v2, ..., vn} to denote the set of tasks
(including dummy tasks), where n = |V | is the number of tasks.
According to Alibaba’s data of 4 million applications [22] [28],
more than 75% of the applications consist of dependent tasks. That
is, modern mobile applications usually contain multiple dependent
tasks [14]. For example, a face recognition application can be di-
vided into five dependent tasks: object acquisition, face detection,
preprocessing, feature extraction and classification [13]. Given
the precedence constraints among these tasks, we use a directed
acyclic graph (DAG) G = (V,E) to denote the dependency
among tasks, where V denotes the task set and E is the set of
edges representing the precedence constraints. More specifically,
there is an edge from task v to task v′ if and only if there exists
data transmission from task v to task v′ (i.e., task v′ can start only
if task v is completed and the corresponding data is transmitted to
task v′). We use the parameter avv′ to denote the amount of data
that are required to be transferred from task v to task v′. Besides,
a sink node of the DAG is a node such that no edge emerges out
of it.
Network Model: A typical MEC network contains a set of edge
nodes, a remote cloud node and a set of local devices. The cloud
node has powerful processing capacity and can cache all services,
but it is far away from edge users (local devices), which means that
the communication delay of transferring tasks from local devices
to the cloud is large. On the contrary, the processing capacity
of local devices is weak and only a few services can be cached
due to the memory size constraint, but tasks can be executed
directly on local devices, i.e., the communication delay can be
ignored. For ease of description, we can regard local devices as
special edge nodes with low processing capacity, and the cloud
as a special edge node with a long transmission distance. We use
set M = {m1,m2, ...,ml} to represent these execution nodes
(including the cloud node and local devices), where l = |M |
denotes the number of nodes. These nodes interconnect with
each other through various network connections (e.g., local-area
network [29]). The communication delay per unit data from nodes
m to m′ is denoted by cmm′ (cmm′ = 0 if m = m′). In this
way, if a task is offloaded to an edge node or the remote cloud,
we can use the communication delay between this task and the
corresponding dummy task to represent the offloading delay of
this task.

In MEC, on the one hand, service caching on edge nodes
will consume various resources of edge nodes, such as storage
and computing resources. On the other hand, compared with the
remote cloud, the storage and computing resources of edge nodes
are relatively small. For example, the storage space of a small

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:42:32 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3076687, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL., NO., APR 2021 4

Symbol Semantics

V a set of tasks
E a set of edges between dependent tasks
M a set of edge nodes
Mv a set of edge nodes that meet the services

constraints for task v ∈ V
Mv(R) a set of nodes that satisfy both processing

resources and services constraints for task v ∈ V
C(m) the processing resource (e.g., CPU cycles)

constraints on node m ∈M
avv′ the amount of data that required to be transferred

from task v to task v′

cmm′ the communication delay per unit data from
node m to node m′

tvm the execution time if task v ∈ V is offloaded
onto node m ∈M

rvm the allocated resources (e.g., storage space)
if task v is offloaded onto node m

zmv whether task v is offloaded onto node m
tv the start time for executing task v ∈ V
mv the offloaded node for executing task v ∈ V

TABLE 1: Key Notations.

mobile base station is about 200GB, and the storage space required
for a service is about 20-100GB [3]. As a result, we cannot load all
services on each edge node, but only a subset of services. Let Mv

represent the set of edge nodes that meet the service constraints for
task v ∈ V . That means task v ∈ V can only be executed by an
edge node in Mv . Moreover, each edge node has limited resources
(e.g., CPU cycles, storage, computing, I/O [19] [30] [31]). We
assume that node m ∈ M has C(m) resources. According to the
attributes of edge nodes and tasks, similar to works [14] [19] [22]
[32], through long-term statistics and analysis, if task v ∈ V is
executed on node m, then rvm resources need to be allocated to
the task v and the execution time is tvm. For ease of description,
we take the resource constraint of the storage space as an example
in this paper. Note that, it is easy to extend to multiple resource
constraints (e.g., consider both storage, CPU and I/O resource
constraints) [19] [31]. Table 1 summarizes some key notations.

3.2 Problem Definition

In MEC, there may contain many applications that need to be
processed in time. Given a set of available nodes and a set of ap-
plications (each application consists of multiple dependent tasks),
we define the problem of offloading these dependent tasks with
service caching (ODT-SC). We first construct a DAG according
to the dependencies among tasks, as described in Section 3.1. We
then use a binary variable zmv to denote whether task v ∈ V is
offloaded onto edge node m ∈ M or not. Let variable tv denote
the start time for task v ∈ V . A feasible offloading solution should
satisfy the following conditions:

1) All Tasks should be Offloaded: Each task should be offloaded
onto exactly one edge node. That means, for each task v ∈ V ,∑
m∈M zmv = 1.

2) Service Constraint: Task v ∈ V can only be offloaded onto
the edge node configured with corresponding required ser-
vices, i.e., the edge node in Mv . That means,

∑
m∈Mv

zmv =
1,∀v ∈ V .

3) Dependency Constraint: For any task pair 〈v, v′〉 ∈ E, task
v′ can start iff all precedent tasks are completed and the
required data is transferred to the edge node mv′ . That is,
for each task pair 〈v, v′〉 ∈ E, tv +

∑
m∈M zmv tvm +∑

m∈M
∑
m′∈M cmm′avv′z

m
v z

m′

v′ ≤ tv′ .
4) Execute Tasks in Sequence: For any pair of tasks v, v′ ∈ V ,

if both tasks are offloaded onto the same edge node m ∈ M
(i.e., mv = mv′ = m), then tv + tvm ≤ tv′ or tv′ + tv′m ≤
tv . That means, each edge node can only perform one task
at a time instance and tasks cannot be interrupted during the
execution [14].

5) Processing Resource Constraints: The processing resource
constraint should be satisfied for every edge node, which can
be formulated as

∑
v∈V z

m
v rvm ≤ C(m),∀m ∈M .

The makespan of these tasks is denoted by T = max{tv +∑
m∈M zmv tvm, v ∈ V }. We aim to find a feasible offloading

solution with a minimum makespan. Thus, the ODT-SC problem
can be formulated as follows:

min T

s.t.



∑
m∈M zmv = 1, ∀v ∈ V∑
m∈Mv

zmv = 1, ∀v ∈ V
tv +

∑
m∈M zmv tvm +

∑
m∈M∑

m′∈M cmm′avv′z
m
v z

m′

v′ ≤ tv′ , ∀ 〈v, v′〉 ∈ E
If tv ≥ tv′ and zmv = zmv′ = 1

then: tv − tv′ ≥ tv′m, ∀v, v′ ∈ V,m ∈M∑
v∈V z

m
v rvm ≤ C(m), ∀m ∈M

tv +
∑
m∈M zmv tvm ≤ T, ∀v ∈ V

tv ≥ 0, ∀v ∈ V
zmv ∈ {0, 1}, ∀m ∈M, v ∈ V

(1)
The first set of equations represents that each task should

be offloaded onto exactly one edge node. The second set of
equations denotes the services constraint, i.e., task v ∈ V can
only be offloaded onto the edge node in set Mv . The third set
of inequalities represents the dependency constraint, i.e., task v′

can start iff all precedent tasks are completed and transferred
corresponding data to the task v′. The fourth set of constraints
guarantees that all tasks on the same edge node will be executed
in sequence. More specifically, if tasks v ∈ V and v′ ∈ V are
offloaded onto the same edge node m ∈ M and without loss of
generality we assume task v starts later than task v′, i.e., tv ≥ tv′ .
In this case, we need to ensure that task v can start only if task
v′ is completed, i.e., tv − tv′ ≥ tv′m. The fifth set of inequalities
represents the processing resource constraints. Our objective is to
minimize the maekspan, i.e., min T .

3.3 Complexity Analysis
In this section, we prove that ODT-SC is one of the most diffi-
cult NP-hard problems for which there exists no approximation

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:42:32 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3076687, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL., NO., APR 2021 5

algorithm with a constant factor.
Theorem 1. ODT-SC is one of the most difficult problems in NP-

hard class: even finding a k-approximation algorithm (k is a
constant) to solve ODT-SC is NP-hard.

To prove this theorem, we first give the following definition.
Definition 1 (Travelling Salesman Problem (TSP) [33]). Given

a set of cities and the distance between every pair of cities,
the problem is to find the shortest route on which each city is
visited exactly once and return to the starting point. In other
words, given an undirected complete graph G(B,A) and the
weight of each edge in A, the objective is to find an optimal
Hamiltonian cycle.

Proof: In the following, we first prove that TSP is a special
case of the ODT-SC problem and then show that finding a k-
approximation algorithm for TSP is NP-Hard.

We consider an arbitrary TSP instance Λ. There are a set of
citiesC = {1, 2, ..., h}, with h = |C|, and the distance is denoted
by dij between each pair of cities i, j ∈ C. Now, we construct a
special case of the ODT-SC problem. Assume there are h identical
edge nodes equipped with all required services, denoted by M =
{1, 2, ..., h}, which are one-to-one correspondence with the cities
in set C. The available processing resources of edge node m ∈M
are the same, denoted by α. h+1 tasks are required to be offloaded
onto these h edge nodes, denoted by V = {v1, v2, ..., vh+1},
and the DAG for the tasks is : v1 → v2 → ... → vh+1. The
execution time tvm = t for any task v ∈ V on any edge node
m ∈M . Task v1 and task vh+1 require α/2 processing resources,
respectively, while the other tasks require α processing resources
each. The data volume that required to be transmitted avv′ = 1
for each edge 〈v, v′〉 on the DAG. The communication delay per
unit data between edge nodes i, j ∈ M is equal to the distance
between cities i and j (i.e., cij = dij). The objective is to find
a feasible offloading with a minimum makespan. For this special
case, obviously, tasks v1 and vh+1 will share one edge node while
each of the other edge nodes will execute only one task. The start
time tvi = tvi−1

+ t + cmvi−1
mvi

for each task vi ∈ V − {v1}
and tv1 = 0. Thus, we can obtain the maskspan:
T = tvh+1

+ t = tvh + t+ dmvh
mvh+1

+ t

= (h+ 1)t+ dmv1
mv2

+ dmv2
mv3

+ ...+ dmvh
mvh+1

(2)
That means, for each task vi ∈ V , the selection of edge node

mvi turns into the selection of ith visited city. This is exactly the
TSP instance Λ. Thus, each TSP instance is a special case of the
ODT-SC problem.

Previous works have proved that finding a k-approximation (k
is a constant) algorithm for TSP is NP-Hard [33] [34]. We give
a briefly proof for completeness. Let G1(B,A1) be any graph,
where B denotes the vertex set and A1 denotes the edge set.
Let b = |B| represent the number of vertices. We construct the
complete graph G(B,A) such that A = {〈p, q〉 |p, q ∈ B} and
define the weight/length of each edge 〈p, q〉 ∈ A as:

dpq =

{
1, 〈p, q〉 ∈ A1

kb, otherwise
(3)

The TSP problem is to find a shortest Hamiltonian cycle
in graph G(B,A). Assuming there exists a k-approximation

algorithm, we denote the optimal solution as OPTHC and the
approximation solution as AHC . Obviously, there exists Hamilto-
nian cycle in G1(B,A1) if and only if:

AHC ≤ k ·OPTHC = kb (4)
These is no Hamiltonian cycle in G1(B,A1) if and only if:

AHC ≥ OPTHC ≥ kb+ b− 1 > kb (5)
Consequently, if the solution AHC ≤ kb, then Hamiltonian cycle
exists in G1(B,A1). If the solution AHC > kb, then there is
no Hamiltonian cycle in G1(B,A1). That means, we can judge
whether there is Hamiltonian cycle in any graph G1(B,A1)
according to the solution of the approximation algorithm (i.e., in
polynomial time). However, the Hamiltonian cycle problem is NP-
complete, which cannot be solved in polynomial time [35] unless
P = NP . Therefore, the assumption is false. As a result, finding a
k-approximation algorithm for TSP is NP-Hard. Considering that
TSP is a special case of ODT-SC, we can conclude that finding a
k-approximation algorithm (k is a constant) to solve ODT-SC is
NP-hard.

The above analysis shows the hardness of the ODT-SC prob-
lem. Thus, in this paper, we first design algorithms to solve
the general ODT-SC problem in Section 4 and then design an
approximation algorithm with bounded approximation factor for
the homogenous scenario in Section 5.

4 ALGORITHMS DESIGN FOR ODT-SC

We first propose a rounding based algorithm to solve ODT-SC in
Section 4.1. Although this method is non-trivial, it cannot provide
satisfactory performance as shown in simulation section. Then, we
propose convex programming based algorithm (CP), which will be
described in Section 4.2.

4.1 Rounding based Algorithm

In this section, we propose a rounding based algorithm for
ODT-SC, called Rounding. Specifically, the Rounding algorithm
offloads dependent tasks through three major steps: 1) relaxing the
constraints of ODT-SC for computing the potential edge node mv

and execution time tv for each task v ∈ V ; 2) determining the
scheduling order of tasks to meet the dependency constraints; and
3) edge node selection for scheduling each task in order with the
aim of minimizing the makespan.

Relaxing the Constraints of ODT-SC. By Eq. (1), ODT-
SC is very difficult to be solved directly. Specifically, the third
set of inequalities in Eq. (1) is quadratic and the fourth set of
constraints in Eq. (1) contains conditional statement. To eliminate
these difficulties, we first define binary variables umm

′

vv′ for any
two tasks v, v′ ∈ V and any two edge nodes m,m′ ∈ M that
satisfy:
zmv + zm

′

v′ − 1

2
≤ umm

′

vv′ ≤
zmv + zm

′

v′

2
,∀v, v′ ∈ V,m,m′ ∈M

(6)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:42:32 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3076687, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL., NO., APR 2021 6

Considering that zmv and zm
′

v′ are both binary variables, it
follows zmv · zm

′

v′ = umm
′

vv′ and we can modify the third set of
inequalities in Eq. (1) as follows:

tv +
∑
m∈M

zmv tvm +
∑
m∈M

∑
m′∈M

cmm′avv′z
m
v z

m′

v′

=tv +
∑
m∈M

zmv tvm +
∑
m∈M

∑
m′∈M

cmm′avv′u
mm′

vv′

≤tv′ ,∀ 〈v, v′〉 ∈ E (7)

We then let χ represent a large number and xvv′ ∈
{0, 1},∀v, v′ ∈ V . In this way, we can modify the fourth set
of constraints in Eq. (1) as the following inequalities:

tv − tv′
χ

< xvv′ ,∀v, v′ ∈ V (8)

χ(3− zmv − zmv′ − xvv′) + tv − tv′ ≥ tv′m,∀v, v′ ∈ V,m ∈M
(9)

More specifically, for any two tasks v and v′, there are two
cases: 1) Both tasks v and v′ are offloaded onto the same edge
node m ∈ M . Without loss of generality, we assume that task
v starts later than task v′, i.e., tv ≥ tv′ . In this case, both zmv
and zmv′ are equal to 1 and Eq. (8) guarantees xvv′ = 1. Thus,
χ(3 − zmv − zmv′ − xvv′) = 0 and Eq. (9) can be simplified
to tv − tv′ ≥ tv′m, which guarantees that task v cannot start
before task v′ is finished. 2) Tasks v and v′ are offloaded onto
different edge nodes, which means zmv and zmv′ cannot be equal
to 1 simultaneously. Under this case, 3 − zmv − zmv′ − xvv′ is
larger than 0 and Eq. (9) holds regardless of the values of tv
and tv′ (i.e., there is no constraint between tv and tv′). Thus,
the above two sets of inequalities guarantee that all tasks on the
same edge node will be executed in sequence and tasks offloaded
onto different edge nodes can be performed simultaneously if
necessary. It means that we transform the fourth set of constraints
in Eq. (1) into the above two sets of inequalities. In the end, we
relax all binary variables. Specifically, ODT-SC assumes that each
task can only be performed onto exact one edge node. By relaxing
this assumption, each task i ∈ V is permitted to be splittable and
performed onto several edge nodes. To sum up, we formulate the
problem as Eq. (10).

Since Eq. (10) is a linear program, we can solve it in polyno-
mial time with a linear program solver such as PuLP [36]. Assume
that the optimal solutions for Eq. (10) are denoted by žmv , ťv , x̌vv′
and ǔmm

′

vv′ , ∀v, v′ ∈ V,∀m,m′ ∈ M , and the optimal result is
denoted by Ť . As Eq. (10) is a relaxation of the ODT-SC problem,
Ť is a lower-bound result for this problem. According to these
optimal solutions obtained by Eq. (10), we can get the potential
edge node and execution time for each task v ∈ V , which will be
used for the following operations.

min T

s.t.



∑
m∈M zmv = 1, ∀v ∈ V∑
m∈Mv

zmv = 1, ∀v ∈ V
zmv +zm

′
v′ −1
2 ≤ umm′vv′ ≤

zmv +zm
′

v′
2 , ∀v, v′ ∈ V,m,m′ ∈M

tv +
∑
m∈M zmv tvm +

∑
m∈M∑

m′∈M cmm′avv′u
mm′

vv′ ≤ tv′ , ∀ 〈v, v′〉 ∈ E
tv−tv′
χ < xvv′ , ∀v, v′ ∈ V

χ(3− zmv − zmv′ − xvv′)+
tv − tv′ ≥ tv′m, ∀v, v′ ∈ V,m ∈M∑
v∈V z

m
v rvm ≤ C(m), ∀m ∈M

tv +
∑
m∈M zmv tvm ≤ T, ∀v ∈ V

tv ≥ 0, ∀v ∈ V
zmv ∈ [0, 1], ∀m ∈M, v ∈ V
xvv′ ∈ [0, 1], ∀v, v′ ∈ V
umm

′

vv′ ∈ [0, 1], ∀v, v′ ∈ V,m,m′ ∈M
(10)

Determining the Execution Order of Tasks. We sort all tasks
by the increasing order of their starting time in a scheduling list
Π. Tie-breaking is done randomly for simplicity. Based on the
fourth set of inequalities in Eq. (10), it can be easily shown that
the increasing order of ťv for v ∈ V preserves the dependency
constraints. Thus, we schedule tasks one by one in the order of
scheduling list Π in the next step to preserve the dependency
constraints.

Edge Nodes Selection. We offload task v ∈ V to edge
node m ∈ M based on the the optimal solution žmv using the
randomized rounding method [37]. More specifically, for each task
v ∈ V , we choose one edge node m ∈ M to set zmv = 1 and set
the other values as 0, which means that we will offload task v to
edge node m, with the probability of žmv . Thus, for each task v in
scheduling list Π, we offload task v to edge node m ∈M with the
probability of žmv . In this way, we can determine the offloading
schedule for all tasks. However, due to the randomized rounding
processing, the selected edge node m ∈ M for task v ∈ V may
break processing resource constraints.

4.2 Convex Programming based Algorithm

In this section, we present a convex programming based algorithm
for ODT-SC, called CP. The workflow of CP is shown in Fig.
2. Similar to Rounding, CP offloads dependent tasks through
four major steps: 1) Relaxing the ODT-SC problem to construct
a convex optimization program. 2) Using progressive rounding
method to obtain feasible solutions. 3) Computing weight for each
task according to the feasible solutions. 4) Offloading tasks based
on the weight values.

Relaxing the ODT-SC Problem. We find that the Rounding
algorithm cannot achieve good results due to introducing too many
variables. Thus, in this section, to eliminate the complexity of Eq.
(1), we first leverage the definition of binary variable zmv , with
∀v ∈ V and ∀m ∈M , to give the following modification:

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:42:32 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3076687, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL., NO., APR 2021 7

Relaxing the
ODT-SC Problem

Offloading Tasks
with Earliest
Finish Time

Construct a
Convex Program Solving this

Convex Program

Computing Weight
for Each Task

Sort Tasks in Descending
Order of Weights

Obtain
Feasible
Solutions

Fig. 2: Workflow of the CP algorithm. CP can be divided into four
steps: relaxing the ODT-SC problem to construct convex program,
using progressive rounding method to solve this program, computing
weight for each task according to the solutions and offloading tasks
according to the weights.

tv +
∑
m∈M

zmv tvm +
∑
m∈M

∑
m′∈M

cmm′avv′z
m
v z

m′

v′ = tv+∑
m∈M

zmv tvm +
∑
m∈M

∑
m′∈M

cmm′avv′ max[zmv + zm
′

v′ − 1, 0]

(11)
Then we assume that edge nodes can perform tasks in parallel

and each task v ∈ V is permitted to be splittable and can
be executed on several edge nodes. In this way, we derive the
following convex optimization problem:

min T

s.t.



∑
m∈M

zmv = 1, ∀v ∈ V∑
m∈Mv

zmv = 1, ∀v ∈ V

tv +
∑

m∈M
zmv tvm +

∑
m∈M

∑
m′∈M

cmm′

avv′ ·max[zmv + zm
′

v′ − 1, 0] ≤ tv′ , ∀ 〈v, v′〉 ∈ E∑
v∈V

zvmrvm ≤ C(m), ∀m ∈M

tv +
∑

m∈M
zmv tvm ≤ T, ∀v ∈ V

tv ≥ 0, ∀v ∈ V
zmv ∈ [0, 1], ∀m ∈M, v ∈ V

(12)
Since Eq. (12) is a convex optimization problem, we can solve

it in polynomial time with a convex programming solvers such as
CPLEX [38]. Assume that the optimal solutions for Eq. (12) are
z̃mv and t̃v , ∀v ∈ V,m ∈ M , and the optimal objective value is
T̃ .

Progressive Rounding. This step obtains integer solutions ẑmv
for each v ∈ V and m ∈ M using the progressive rounding
method [39]. More specifically, in each iteration, we first solve
Eq. (12) and obtain fractional solutions z̃mv . Then we choose some
tasks v ∈ V with large value of max{z̃mv ,m ∈ M} and use
randomized rounding method [37] to derive an integer solution
ẑmv for these chosen tasks. We fix the integer solution in ẑmv (i.e.,
fix these rounding solutions as known quantities) and solve Eq.
(12) again. In this way, we can obtain a feasible solutions ẑmv after

several iterations. That means, we get the offloaded edge node mv

for each task v ∈ V (i.e., ẑmv
v = 1) while assuming edge node

can simultaneously execute tasks in this step.

Computing Weights. This step computes the weight for each
task. More specifically, we first insert an end task at the bottom of
the DAG and connect this task with all sink nodes of the DAG. We
then denote the weight of each link 〈v, v′〉 ∈ E as w 〈v, v′〉 =
tvmv + cmvmv′avv′ and the weights of links connected with the
end task are set as 0. In this way, we compute the maximum
distance from each task v ∈ V to the end task, denoted by W (v).
It can be easily shown that the descending order of their distance
to the end task preserves the dependency constraints and a larger
value means potential longer execution time. Thus, we sort all
tasks in descending order of their distance to the end task and
keep them in a list Π.

Offloading Tasks. We offload tasks following the order of list
Π in this step. We define some concepts/variables to facilitate the
description of this part. We use Pred(v) and Succ(v) to denote
the set of immediate predecessor and successor tasks of task v ∈
V , respectively, which can be obtained according to the DAG. Let
R(m) denote the rest processing resources for edge nodem ∈M ,
initialized as C(m). Mv(R) denotes the set of edge nodes that
satisfy both processing resource and service constraints for task
v ∈ V , formally Mv(R) = Mv

⋂
{m |R(m) ≥ rvm, m ∈

M}. Let T (v,m) represent the first date at which there is a larger
idle time slot on edge node m ∈ M than tvm, initialized as 0.
Note that, the idle time slot may be between two already-offloaded
tasks on edge node m or after the time all tasks offloaded onto
edge node m are completed. Moreover, for each task v ∈ V , the
actual offloaded edge node, the actual start time and the actual
finish time are denoted by mv , t̄v and f̄v , respectively, and are
initialized to 0. With these definitions, if task v is offloaded onto
edge node m, we can calculate the earliest start time EST (v,m)
and the earliest finish time EFT (v,m):
EST (v,m) = max(T (v,m), max

v′∈Pred(v)
(f̄v′ + cmv′mav′v))

(13)
EFT (v,m) = EST (v,m) + tvm (14)

In each iteration, we choose the first task v in list Π for
offloading. We first compute the earliest finish time EFT (v,m)
for each edge node m ∈ Mv(R) by Eq. (14) and then offload
task v onto edge node m with minm∈Mv(R)EFT (v,m). After
task v is offloaded, we record the actual offloaded edge node mv .
Besides, we update the actual start time t̄v , the actual finish time
f̄v and the rest processing resources R(mv) by Eqs. (15), (16)
and (17), respectively.

t̄v = EST (v,mv) (15)
f̄v = t̄v + tvmv

(16)
R(mv) = R(mv)− rvm (17)

We repeat these operations until all tasks have been offloaded.
The CP algorithm is formally described in Algorithm 1.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:42:32 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3076687, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL., NO., APR 2021 8

Algorithm 1 CP: Convex Programming based Algorithm for
ODT-SC

1: Step 1: Relaxing ODT-SC Problem
2: Construct a convex optimization program in Eq. (12)
3: Obtain the optimal solution z̃mv , t̃v
4: Step 2: Progressive Rounding
5: Derive an integer solution ẑmv by progressive rounding for

each v ∈ V , m ∈M
6: Step 3: Computing Weights
7: Compute W (v) for each task v ∈ V
8: Sort all tasks v ∈ V in descending order of their distance to

the end task and saved in list Π
9: Step 4: Offloading Tasks

10: for each task v ∈ V do
11: Obtain Pred(v) according to DAG
12: Initialize variables t̄v and f̄v to 0
13: end for
14: for each edge node m ∈M do
15: Initialize variables R(m) to C(m)
16: end for
17: while offloading list Π 6= ∅ do
18: Select the first task v from the list Π
19: Update Mv(R) = Mv

⋂
{m |R(m) ≥ rvm, m ∈M}

20: Compute EFT (v,m) with Eq. (14) for m ∈Mv(R)
21: Offload task v on m with minm∈Mv(R)EFT (v,m)
22: Record the offloaded edge node as mv

23: Update t̄v , f̄v and R(mv) with Eq. (15), Eq. (16) and Eq.
(17), respectively

24: Delete task v from offloading list Π
25: end while

5 FAVORITE SUCCESSOR BASED ALGORITHM FOR
THE PRACTICAL HOMOGENEOUS SCENARIO

The above section has proposed the CP algorithm to solve
the general ODT-SC problem (i.e., heterogeneous scenario). In
many practical scenarios, since most of the edge nodes are
placed/purchased at the same time by providers, the hardware
specifications of edge nodes are similar [40] [41] [42]. Thus, this
section studies the offloading problem in homogeneous scenarios.
We assume that all edge nodes have similar processing capacity
and all links have similar transmission rate. In other words, we use
ev to denote the execution time tvm if task v ∈ V is offloaded
onto edge node m ∈ M (i.e., ev = tvm) and use c to denote
the communication delay per unit data cmm′ for each pair of edge
nodes m,m′ ∈M (i.e., c = cmm′).

MEC decreases the task offloading delay by placing computing
resources in close proximity to the local devices. On the one hand,
with the development of the 5G technology, the data transmission
rate has been greatly improved [3]. On the other hand, the
processing capacity of edge nodes is limited. Thus, for the typical
applications, e.g., virtual/augmented reality (VR/AR), cognitive
assistance and mobile gaming, the task execution delay is much
greater than the transmission delay [2]. Thus, in the practical
scenarios discussed in this section, we assume the minimum
processing delay is greater than the maximum communication

delay [41]. This section presents an approximate algorithm with
bounded approximation factor for offloading tasks in the practical
homogeneous scenarios.

5.1 Favorite Successor based Algorithm Description

In a dependent task set V , each task v ∈ V may have several
precedent tasks (i.e., predecessors) and several succedent tasks
(i.e., successors). The predecessor/successor of task v that of-
floaded onto the same edge node as task v does not consume
communication delay for data transmission between different edge
nodes. Thus, how to select predecessor/successor of task v to
offload onto the same edge node as task v is important during
scheduling dependent tasks. Based on this consideration, we first
give the definitions of favorite successor and predecessor for this
problem.

Definition 2 (Favorite Successor [43]). For any task v ∈ V , if
task v′ ∈ Succ(v) satisfies t̄v′ < t̄v + ev + cavv′ , then task
v′ is called the favorite successor for task v.

Definition 3 (Favorite Predecessor [43]). For any task v ∈ V , if
task v′ ∈ Pred(v) satisfies t̄v′ + ev′ + cav′v > t̄v , then task
v′ is called the favorite predecessor for task v.

According to the above definitions, we prove that each task
v ∈ V has at most one favorite successor/predecessor and
the favorite successor/predecessor v′ must be offloaded onto the
same edge node as task v. Specifically, if there are two favorite
successors v′ and v′′ of task v, then both tasks v′ and v′′

should be offloaded to the same edge node as task v. Otherwise
t̄v′(¯tv′′) ≥ t̄v + ev + c · avv′(c · avv′′), which contradicts the
definition of favorite successor. Without loss of generality, assume
that t̄v′ ≥ ¯tv′′ . In this way, t̄v′ will be performed at least at time
t̄v+ev+ev′′ ≥ t̄v+ev+c ·avv′ . That is, t̄v′ ≥ t̄v+ev+c ·avv′ ,
which contradicts the definition of favorite successor. Thus, each
task v ∈ V has at most one favorite successor. Similarly, we can
prove that each task has at most one favorite predecessor.

Based on the definition of favorite successor, we present a
favorite successor based algorithm to solve the special case (FS).
Specifically, FS offloads tasks through two major steps: 1) obtain
favorite successor without considering services and the number
of edge nodes constraints. The results can reflect the dependency
priority of the DAG. 2) favorite successor based offloading while
considering the number of edge nodes and service constraints.

Obtaining Favorite Successor. We first attempt to offload
tasks to edge nodes without considering services and the number
of edge nodes constraints. In this situation, we only need to
consider the dependency constraint and we formulate this problem
as follows:

min T

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:42:32 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3076687, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL., NO., APR 2021 9

s.t.



tv + ev + cavv′yvv′ ≤ tv′ , ∀ 〈v, v′〉 ∈ E∑
v′∈Succ(v) yvv′ ≥ |Succ(v)| − 1, ∀v : 〈v, v′〉 ∈ E∑
v′∈Pred(v) yv′v ≥ |Pred(v)| − 1, ∀v : 〈v′, v〉 ∈ E

tv + ev ≤ T, ∀v ∈ V
tv ≥ 0, ∀v ∈ V
yvv′ ∈ {0, 1}, ∀ 〈v, v′〉 ∈ E

(18)
where binary variable yvv′ denotes whether task v′ is the favorite
successor of task v. Specifically, yvv′ = 0 represents that task v′ is
the favorite successor of task v, otherwise yvv′ = 1. The first set of
inequalities indicates the dependency constraints. Specifically, if
yvv′ = 0, then this set of inequalities turns into tv+ev ≤ tv′ (i.e.,
no communication delay between task v and task v′ if v′ is the
favorite successor of v). Otherwise, it turns into tv+ev+cavv′ ≤
tv′ (i.e., we need consider communication delay between task v
and task v′ if v′ is not the favorite successor of v). The second
and third sets of inequalities indicate that any task has at most
one favorite successor/predecessor. For example, if task v ∈ V
has more than one favorite successor, then

∑
v′∈Succ(v) yvv′ <

|Succ(v)|−1, which contradicts the second inequality. The fourth
set of inequalities means the task offloading delay, i.e., task v can
be executed only when it has been offloaded from the local device
to the edge node. Our objective is to minimize the makespan, i.e.,
min T.

To solve this program in polynomial time, we relax the sixth
set of constraints by setting yvv′ ∈ [0, 1]. In this way, we
can obtain the optimal solutions ỹvv′ (∀ 〈v, v′〉 ∈ E) with a
linear programming solver such as PuLP [36]. The second set
of inequalities indicates that at most one successor v′ of task
v ∈ V can satisfy ỹvv′ < 0.5. Specifically, if there exists two
successors v′ and v′′ of task v ∈ V such that ỹvv′ < 0.5 and
ỹvv′′ < 0.5, then we have

∑
v′∈Succ(v) yvv′ < |Succ(v)| − 1,

which contradicts with the second set of inequalities. Thus, for
each 〈v, v′〉 ∈ E, let ŷvv′ = 0 if ỹvv′ < 0.5, and let ŷvv′ = 1
otherwise. In this way, we get the integer solutions, that is, the
favorite successor (if exists) for each task.

Favorite Successor based Offloading. In this step, we lever-
age the results obtained by the first step and the list offloading
algorithm [23] to offload tasks. That is, we offload tasks one by
one with the earliest start time while trying to assign the favorite
successor of task i to the same edge node as task i. During the
offloading process, we first introduce some definitions for the sake
of convenience. We use VR to denote the set of tasks whose all
predecessors have been offloaded, initialized as the set of tasks
without predecessor. In other words, VR denote the set of tasks
that can be offloaded at this time. Moreover, let lm denote the
last offloaded task on edge node m ∈ M at this time and fm
denote the favorite successor of task lm, both initialized as none.
We use Avail(v) = maxv′∈Pred(v)(t̄v′ + ev′ + cav′v) to denote
the available time that task v can be executed on any edge node.
That is, task v can be executed only after all its predecessors have
been executed and the corresponding data has been transmitted.

Then we compute the earliest start time EST (v,m) with Eq.
(13) for each task v ∈ VR and edge node m ∈Mv . For each edge
node m ∈ Mfm , if EST (fm,m) < T (fm,m) + calmfm , edge

node m can execute the favorite successor fm earlier than other
edge nodes. Thus, we try to reserve edge node m for executing
task fm. For each task v ∈ VR

⋂
Succ(lm) and v 6= fm

and m ∈ Mv (i.e., v is a potential competing successor), if 1)
Avail(v) ≥ EST (fm,m) or 2) there is an edge node m′ 6= m
such that EST (v,m′) ≤ Avail(v) and if m′ ∈ Mfm′ and
EST (fm′ ,m

′) < T (fm′ ,m
′) + calm′fm′ , v /∈ Succ(lm′) or

v = fm′ , we defer the earliest staring time of task v on edge node
m, that is, EST (v,m) = EST (fm,m) + efm . Then we choose
edge node m′ with minv′∈VR,m′∈Mv′ EST (v′,m′) to offload
task v′. After task v′ is offloaded, we record the actual offloaded
edge node mv′ and update t̄v′ and f̄v′ with Eq. (15) and Eq. (16),
respectively. Besides, we update the last offloaded task lmv′ as
task v′ and update the unoffloaded ready set VR. We repeat this
iteration until all tasks have been offloaded. The FS algorithm is
formally described in Algorithm 2.

5.2 Performance Analysis
This section analyzes the approximate performance of FS. If
we do not consider the services and the number of edge nodes
constraints, we can offload tasks satisfying the favorite successor
requirement. We first give the approximation ratio for this prob-
lem.
Theorem 2. If we do not consider edge node constraints and

offload tasks according to the integer solutions obtained by
Eq.(18), we can finish all tasks in a makespan at most 4

3 times
of the optimal makespan.

Proof: Let Two denote the actual makespan and twov denote
the actual start time of task v ∈ V using the integer solutions to
offload. Let T lp denote the makespan obtained by linear program,
which is the lower-bound of the optimal makespan (denoted as
T opt). We denote the weight of link 〈v, v′〉 ∈ E as w 〈v, v′〉 =
ev + cavv′yvv′ .

Since we assume the system contains an unlimited number of
edge nodes, we can offload any task once it receives all data from
successors. Thus, Two equals to the longest path in the DAG. It
means:

Two

T lp
≤ max
〈v,v′〉∈E

(
wwo 〈v, v′〉
wlp 〈v, v′〉

)

= max
〈v,v′〉∈E

(
ev + cavv′ ŷvv′

ev + cavv′ ỹvv′
) (19)

If ŷvv′ = 0, then ev+cavv′ ŷvv′
ev+cavv′ ỹvv′

≤ 1. Otherwise ỹvv′ ≥ 0.5, which
means:

ev + cavv′ ŷvv′

ev + cavv′ ỹvv′
≤ ev + cavv′

ev + 0.5cavv′
≤ 4

3
(20)

The last inequality holds because we assume that ev ≥ cavv′ for
this special case. Hence we conclude that:

Two

T opt
≤ Two

T lp
≤ max
〈v,v′〉∈E

(
ev + cavv′ ŷvv′

ev + cavv′ ỹvv′
) ≤ 4

3
(21)

We then give some features of the proposed FS algorithm.
Lemma 3. Let l′ = minv∈V (|Mv|) (i.e., for any task, at least l′

edge nodes are configured with required services) and l′′ =
l − l′. We use T [0, t̄v] to denote the accumulate idle time on

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:42:32 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3076687, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL., NO., APR 2021 10

Algorithm 2 FS: Favorite Successor based Algorithm for Homo-
geneous Scenario

1: Step 1: Obtaining Favorite Successor
2: Construct a linear program based on Eq. (18)
3: Obtain the optimal solution ỹvv′
4: Derive an integer solution ŷvv′ for each 〈v, v′〉 ∈ E
5: Record the favorite successor (if exists) for each task based

on the integer solution
6: Step 2: Favorite Successor based Offloading
7: for each task v ∈ V do
8: Obtain Pred(v) and Succ(v) according to DAG
9: Initialize variables t̄v , f̄v and Avail(v) to 0

10: end for
11: for each edge node m ∈M do
12: Initialize the last offloaded task lm to none
13: end for
14: Compute the set VR of unoffloaded tasks that all predecessors

are offloaded
15: while VR 6= ∅ do
16: for each task v ∈ VR and edge node m ∈Mv do
17: Compute EST (v,m) with Eq. (13)
18: end for
19: for each edge node m ∈ M that the last offloaded task lm

have a favorite successor fm ∈ VR do
20: if m ∈Mfm and EST (fm,m) < T (fm,m)+calmfm

then
21: for each task v ∈ VR

⋂
Succ(lm) and v 6= fm and

m ∈Mv do
22: Avail(v) = maxv′∈Pred(v)(t̄v′ + ev′ + cav′v)
23: if 1) Avail(v) ≥ EST (fm,m)

or 2) there is an edge node m′ 6= m such that
EST (v,m′) ≤ Avail(v) and if m′ ∈ Mfm′

and EST (fm′ ,m
′) < T (fm′ ,m

′) + calm′fm′ ,
v /∈ Succ(lm′) or v = fm′ then

24: Update EST (v,m) = EST (fm,m) + efm
25: end if
26: end for
27: end if
28: end for
29: ESTmin = minv∈VR,m∈Mv EST (v,m)
30: Choose one task v′ ∈ VR to offloaded onto edge node

m′ ∈Mv′ which satisfying EST (v′,m′) = ESTmin
31: Use mv′ to record the offloaded edge node
32: Update t̄v′ and f̄v′ with Eq. (15) and Eq. (16), respectively
33: Update the last offloaded task lmv′ = v′

34: Update the unoffloaded task set VR that all predecessors are
offloaded

35: end while

all edge nodes before the actual start time t̄v of task v. Then
we have :

T [0, t̄v] ≤ (l′ − 1)twov + l′′t̄v

Proof: In the worst case, the other l′′ edge nodes have not
been configured with any service and all tasks require the support
of service(s). Thus, all tasks can only be offloaded onto l′ edge

nodes while leaving other l′′ edge nodes idle. That means, the
accumulate idle time on l′′ edge nodes equals to l′′t̄v . If we can
show at most (l′ − 1)twov accumulate idle time on l′ other edge
nodes, the proof is finished. This becomes the identical parallel
machines scheduling with dependent tasks problem [43], which
has been illustrated by previous works such as [43] [44] [45].
Lemma 4. Let T fsl denote the actual makespan by using the FS

algorithm. Then we have:
T [0, T fsl] ≤ (l′ − 1)Two + l′′T fsl

Proof: Let task v be the last completed task by the FS
algorithm, by applying Lemma 3, we have

T [0, T fsl] = T [0, t̄v] + T [t̄v, T
fs
l]

≤ (l′ − 1)twov + l′′t̄v + (l − 1)ev

= (l′ − 1)(twov + ev) + l′′(t̄v + ev)

≤ (l′ − 1)Two + l′′T fsl (22)

Now, we give the approximation performance of our proposed
FS algorithm.
Theorem 5. Let T optl to denote the optimal makespan for offload-

ing on l edge nodes. We have T fs
l

T opt
l

≤ l
l′ + 4

3 .

Proof: We know that the accumulated idle time plus the
whole tasks execution time is equal to the total time slices. By
applying Theorem 2 and Lemma 4, we have:

lT fsl = T [0, T fsl] +
∑

v∈V
ev

≤ (l′ − 1)Two + l′′T fsl +
∑

v∈V
ev

⇒ T fsl ≤
l′ − 1

l′
Two +

∑
v∈V ev
l′

≤ 4(l′ − 1)

3l′
T opt +

l

l′
T optl

≤ 4

3
T optl +

l

l′
T optl (23)

The penultimate inequality holds because T optl ≥
∑

v∈V ev
l . Thus,

we conclude that FS can achieve an approximate ratio of l
l′ + 4

3 ,
where l is the number of edge nodes and l′ = minv∈V (|Mv|)
(i.e., for any task, at least l′ edge nodes are configured with
required services).

6 PERFORMANCE EVALUATION

This section evaluates the performance of the proposed algorithms
by comparing with state-of-the-art methods over multiple applica-
tion scenarios using real-world applications (from [23]) and data
traces (from [24]).

6.1 Performance Metrics and Methodology
We mainly focus on the comparison of makespan in this section,
which is one of the most important metrics for the task offloading
problem. We compare CP and FS with the following existing
approaches.
• The first one is GenDoc [22]. It derives an efficient dynamic

programming based algorithm to find the optimal dependent

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:42:32 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3076687, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL., NO., APR 2021 11

tasks offloading scheme with fixed service caching. The key
characteristic of GenDoc is that one task might be placed
and executed on multiple edge nodes repeatedly to avoid
communication delay and achieve the objective of makespan
minimization. However, this method may consume huge
processing resources on edge nodes.

• The second one is the Individual Time Allocation with
Greedy Offloading (ITAGS) algorithm [14], which aims at
minimizing the communication and computation costs while
satisfying makespan constraint. Specifically, ITAGS first uses
a binary-relaxed version of the original problem to allocate
a completion deadline for each individual task, and then
greedily optimizes the offloading of each task subject to its
time allowance. For fair comparison, we modify the objective
of ITAGS to makespan minimization while satisfying pro-
cessing resources constraints. In this way, ITAGS can solve
the same problem proposed in this paper.

• The third one is the rounding based algorithm, which is
illustrated in Section 4.1. We use Rounding to denote this
method.

• The last one is the traditional algorithm, denoted as Greedy.
This algorithm picks tasks starting from the top of the DAG
to keep dependency. Then it offloads each picked task to
the edge node with the earliest finish time while satisfying
service and resource constraints.

6.2 Simulation Settings
In this section, we introduce the simulation settings, including the
generation methods of DAGs, task set settings, and the scenario
settings for simulations.

6.2.1 DAG Generation
Similar to [14] [23], we generate DAGs with respect to real-
world structures, namely Gaussian Elimination (GE) [46] and Fast
Fourier Transform (FFT) [47]. For the GE structure, given the
dimension η of a graph, the number of tasks in a GE structure
is η2+η−2

2 [23]. For the FFT structure, we divide this structure
into two parts: recursive calls and the butterfly operation. The
number of FFT points θ determines the number of tasks in a
FFT structure. There are 2 · (θ − 1) + 1 recursive call tasks and
θ log2 θ [23]. Both generated structures are well known and used
in real-world scenarios. In the following simulations, we generate
dependent task set based on the above two structures, denoted by
GE Structure and FFT Structure, respectively.

6.2.2 Task Set Settings
Similar to [17] [48], we use the data traces of google clusters
[24] to generate task sets. The google cluster track contains
hundreds of thousands of jobs (applications). Each job consists
of one to thousands of tasks and each task has various pa-
rameters specified, including resource requests (e.g., storage and
computing requirements) and service requests (e.g., can only be
offloaded onto nodes equipped with corresponding services). For
other information not included, we use the following methods to
generate for our simulations. Specifically, for the general ODT-
SC problem, to emulate the heterogeneous environment (e.g., the

processing delay of the same job will vary on different edge
nodes), we scale the processing time collected from [24] with
a factor uniform distribution in (1,10). The communication-to-
computation ratio is uniformly randomized in (0.1,10). In other
words, for each task pair 〈v, v′〉 ∈ E, the communication delay
for data transmission from task v to task v′ is generated through
multiplying the processing time for task v with a random number
in (0.1,10). Moreover, the required processing resources rvm is
drawn uniformly in (1,10) for each task v on edge node m. For
each task, the percentage of edge nodes, configured with required
services, is denoted by Ω. We set Ω as 50% and the number of
edge nodes as 10 by default.

6.2.3 Simulation Scenario Settings
The simulations are performed under two scenarios. Specifically,
the first scenario is applied to the heterogeneous environment, i.e.,
the general ODT-SC problem. We evaluate the performance of CP,
GenDoc, ITAGS, Rounding and Greedy under this scenario. The
second scenario is applied to the homogeneous environment, i.e.,
the special case introduced in Section 5. We compare FS with CP,
GenDoc, ITAGS, Rounding and Greedy under this scenario.

We divide the simulations into six groups and each group of
simulations contains the above two scenarios. Basically, we first
run 10,000 random test cases to evaluate the overall makespan
performance among all algorithms. Then we simulate the mean
makespan of these algorithms over a wide range of parameters in
the number of tasks, the percentage of edge nodes performing a
task, the communication-to-computation ratio and the number of
edge nodes.

6.3 Simulation Results
In order to demonstrate the effectiveness of our proposed algo-
rithms, we run six sets of simulations for each DAG structure
(e.g., GE and FFT structures) and each simulation scenario (e.g.,
heterogeneous and homogeneous scenarios).
Overall Performance Comparison: In the first set of simula-
tions, we first randomly generate 200 DAGs using GE and FFT
algorithms with the number of tasks from 5 to 500. For each DAG,
we generate 50 task set settings according to Section 6.2.2. Thus,
we generate totally 10,000 test cases. We perform CP, GenDoc,
ITAGS, Rounding and Greedy on these test cases and evaluate the
overall makespan performance. The results are shown in Fig. 3.
We observe that CP can reduce mean makespan by about 21%,
27%, 35% and 47% compared with ITAGS, GenDoc, Rounding
and Greedy, respectively. Besides, as shown in Fig. 3(b), over
60% of test cases will be completed within the makespan of 6000
by CP, while only less than 50% of test cases will be completed
within the makespan of 6000 by other algorithms. Thus, in the
heterogeneous scenarios, CP achieves better overall makespan
performance compared with other benchmarks. That is because
our proposed CP algorithm has considered the service caching
when making offloading decisions and the algorithm is well-
designed (e.g., progressive rounding and computing weights).

Similarly, for each DAG, we generate 50 different random
settings that meet the requirements of the homogeneous scenarios.
Overall, we generate totally 10,000 test cases for homogeneous

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:42:32 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3076687, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL., NO., APR 2021 12

 0

 3

 6

 9

 12

CP ITAGS GenDoc Rounding Greedy

M
ea

n
 M

ak
es

p
an

 (
×

 1
0

 3
)

Offloading Algorithms

(a) Mean Makespan.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 3 6 9 12 15 18

C
D

F

Makespan (× 10
3
)

CP
ITAGS

GenDoc
Rounding

Greedy

(b) CDF of Makespan.

Fig. 3: Overall Performance for Heterogeneous Scenario.

 0

 0.5

 1

 1.5

 2

 2.5

 3

FS CP GenDoc ITAGS Rounding Greedy

M
ea

n
 M

ak
es

p
an

 (
×

 1
0

 3
)

Offloading Algorithms

(a) Mean Makespan.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

C
D

F

Makespan (× 10
3
)

FS
CP

GenDoc
ITAGS

Rounding
Greedy

(b) CDF of Makespan.

Fig. 4: Overall Performance for Homogeneous Scenario.

 0

 1

 2

 3

 4

 5

 6

Rank1 Rank2 Rank3 Rank4 Rank5N
u
m

b
er

 o
f

T
es

t
C

as
es

 (
×

 1
0
 3

)

Rank of Makespans

CP
ITAGS

GenDoc
Rounding

Greedy

(a) for Heterogeneous Scenario.

 0

 1

 2

 3

 4

 5

 6

 7

 8

Rank1 Rank2 Rank3 Rank4 Rank5N
u
m

b
er

 o
f

T
es

t
C

as
es

 (
×

 1
0
 3

)

Rank of Makespans

FS
GenDoc
ITAGS

Rounding
Greedy

(b) for Homogeneous Scenario.

Fig. 5: Number of Test Cases vs. Rank of Makespans.

scenarios. Note that, both our proposed CP and FS algorithms
can be applied in homogeneous scenarios. Thus, we test FS, CP,
GenDoc, ITAGS, Rounding and Greedy on these 10,000 test cases.
As shown in Fig. 4, FS reduces the mean makespan by about 11%,
20%, 25%, 35% and 45% compared with CP, GenDoc, ITAGS,
Rounding and Greedy, respectively. It means that FS can achieve
better makespan results than CP in homogeneous scenarios. That
is because CP is specifically designed for homogeneous scenarios
and is more efficient than CP in homogeneous scenarios. We
usually perform the CP algorithm for heterogeneous scenarios and
execute FS for homogeneous scenarios.
Comparison on the Number of Test Cases in Different Rank-
ings: Similar to the first set of simulations, we generate totally
10,000 random heterogeneous test cases and evaluate CP, ITAGS,
Rounding and Greedy on these test cases. For each test case, we
sort all the algorithms in the ascending order of their makespans.
The first algorithm, i.e., with the shortest makespan, is marked
as Rank 1 and the algorithm with the second shortest makespan
is marked as Rank 2. Similarly, we mark all algorithms for each
test case. In the end, we perform 10000 test cases and count the
number of times that each algorithm is marked as Rank 1/2/3/4/5.
The simulation results are shown in Fig. 5(a). We observe that
CP produces the minimum makespan in 45.61% (4,561 out of
10,000) of test cases. By comparison, ITAGS, GenDoc, Rounding
and Greedy are in Rank 1 in 1912, 1856, 1639 and 32 test
cases, respectively. Our proposed CP algorithm has considered the
service caching constraints and adopted well-designed algorithm
steps. As a result, CP achieves the shortest makespan in most test
cases and produces the longest makespan only in a few test cases.
Similarly, we test FS, GenDoc, ITAGS, Rounding and Greedy on
10,000 random homogeneous test cases. As shown in Fig. 5(b), FS
produces the shortest makespan in 58.85% (5,885 out of 10,000)

of test cases and the longest makespan on very little small portion
(less than 1%) of the test cases. By comparison, GenDoc is in
Rank 2 for most test cases, ITAGS is in Rank 3 for most cases and
Greedy produces the longest makespan for most cases. The results
indicate our proposed FS algorithm outperforms other state-of-
the-art solutions on most test cases.
Impact of the Number of Tasks on Makespan: The third set
of simulations investigates the mean makespan by changing the
number of tasks. We execute each simulation 100 times and
average the numerical results. The results are shown in Figs.
6-7. Fig. 6 shows the results for the general ODT-SC problem
with different DAG structures. As the number of tasks increases,
the mean makespan increases for all algorithms. CP can always
achieve lower mean makespan compared with the other four
algorithms. For example, when there are 400 tasks in the FFT
structure, the mean makespan under CP is 5,783 while 7982, 8010,
8345 and 9834 under ITAGS, GenDoc, Rounding and Greedy,
respectively. In other words, CP can decrease mean makespan by
about 28%, 29%, 31% and 42% compared with ITAGS, GenDoc,
Rounding and Greedy, respectively. Besides, GenDoc is in Rank
2 when the number of tasks is not more than 300 and in Rank
3 when the number of tasks is more than 300. That is because
GenDoc may consume more processing resources and encounter
resource constraints as the number of tasks increases.

Fig. 7 gives the results for homogeneous scenarios with differ-
ent DAG structures. We observe that our proposed FS algorithm
always outperforms four benchmarks. Basically, FS achieves the
shortest mean makespan while CP is in Rank 2, GenDoc is in
Rank 3, ITAGS is in Rank 4, Rounding is in Rank 5 and Greedy
produces the longest mean makespan. For example, when there
are 300 tasks in the GE structure, our proposed FS algorithm
can reduce the mean makespan by about 10%, 25%, 30%, 38%
and 49% compared with CP, GenDoc, ITAGS, Rounding and
Greedy, respectively. That is because FS is specifically designed
for homogeneous scenarios and can be more efficient than other
algorithms designed for the general ODT-SC problem.
Impact of the Value of Ω on Makespan: The fourth set of
simulations shows the mean makespan by changing the value
of Ω, i.e., for each task, the percentage of edge nodes that
are configured with required services. The results are shown in
Figs. 8-9, where the horizontal axes are the value of Ω. As the
value of Ω increases, the mean makespan decreases under all
algorithms and CP/FS always achieve lower mean makespan than
other algorithms. Fig. 8 shows the results for the general ODT-SC

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:42:32 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3076687, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL., NO., APR 2021 13

 0

 4

 8

 12

 16

 20

0 20 50 100 200 300 400 500

M
ea

n
 M

ak
es

p
an

 (
×

 1
0

 3
)

Number of Tasks

Greedy
Rounding

GenDoc
ITAGS

CP

(a) for the GE Structure.

 0

 3

 6

 9

 12

0 20 50 100 200 300 400 500

M
ea

n
 M

ak
es

p
an

 (
×

 1
0

 3
)

Number of Tasks

Greedy
Rounding

GenDoc
ITAGS

CP

(b) for the FFT Structure.

Fig. 6: Mean Makespan vs. Number of Tasks for Heterogeneous
Scenario.

 0

 1

 2

 3

 4

 5

0 20 50 100 200 300 400 500

M
ea

n
 M

ak
es

p
an

 (
×

 1
0

 3
)

Number of Tasks

Greedy
Rounding

ITAGS
GenDoc

CP
FS

(a) for the GE Structure.

 0

 1

 2

 3

 4

0 20 50 100 200 300 400 500

M
ea

n
 M

ak
es

p
an

 (
×

 1
0

 3
)

Number of Tasks

Greedy
Rounding

ITAGS
GenDoc

CP
FS

(b) for the FFT Structure.

Fig. 7: Mean Makespan vs. Number of Tasks for Homogeneous
Scenario.

 3

 6

 9

 12

 15

 18

 0.2 0.4 0.6 0.8 1

M
ea

n
 M

ak
es

p
an

 (
×

 1
0

 3
)

â��Ωâ��

Greedy
Rounding

GenDoc
ITAGS

CP

(a) for the GE Structure.

 2

 4

 6

 8

 10

 0.2 0.4 0.6 0.8 1

M
ea

n
 M

ak
es

p
an

 (
×

 1
0

 3
)

â��Ωâ��

Greedy
Rounding

GenDoc
ITAGS

CP

(b) for the FFT Structure.

Fig. 8: Mean Makespan vs. the Value of Ω for Heterogeneous
Scenario.

 0

 1

 2

 3

 4

 0.2 0.4 0.6 0.8 1

M
ea

n
 M

ak
es

p
an

 (
×

 1
0

 3
)

â��Ωâ��

Greedy
Rounding

ITAGS
GenDoc

CP
FS

(a) for the GE Structure.

 0

 1

 2

 3

 4

 0.2 0.4 0.6 0.8 1

M
ea

n
 M

ak
es

p
an

 (
×

 1
0

 3
)

â��Ωâ��

Greedy
Rounding

ITAGS
GenDoc

CP
FS

(b) for the FFT Structure.

Fig. 9: Mean Makespan vs. the Value of Ω for Homogeneous
Scenario.

 0

 2

 4

 6

 8

 10

 12

 14

0.1 0.2 1 2 4

M
ea

n
 M

ak
es

p
an

 (
×

 1
0

 3
)

Communication-to-Computation Ratio

CP
ITAGS

GenDoc
Rounding

Greedy

(a) for the GE Structure.

 0

 1

 2

 3

 4

 5

 6

 7

 8

0.1 0.2 1 2 4

M
ea

n
 M

ak
es

p
an

 (
×

 1
0

 3
)

Communication-to-Computation Ratio

CP
ITAGS

GenDoc
Rounding

Greedy

(b) for the FFT Structure.

Fig. 10: Mean Makespan vs. Communication-to-Computation Ratio
for Heterogeneous Scenario.

 0

 1

 2

 3

 4

 5

0.1 0.2 1 2 4

M
ea

n
 M

ak
es

p
an

 (
×

 1
0

 3
)

Communication-to-Computation Ratio

FS
CP

GenDoc
ITAGS

Rounding
Greedy

(a) for the GE Structure.

 0

 0.5

 1

 1.5

 2

 2.5

 3

0.1 0.2 1 2 4

M
ea

n
 M

ak
es

p
an

 (
×

 1
0

 3
)

Communication-to-Computation Ratio

FS
CP

GenDoc
ITAGS

Rounding
Greedy

(b) for the FFT Structure.

Fig. 11: Mean Makespan vs. Communication-to-Computation Ratio
for Homogeneous Scenario.

problem with different DAG structures. We observe that CP always
achieves the lower makespan compared with the other algorithms.
For example, for each task, if we only install required services
on 40% of edge nodes in the GE structure, CP will achieve mean
makespan of 6368, while ITAGS, Rounding, GenDoc and Greedy
can achieve mean makespans of 10024, 10045, 11103 and 13141,
respectively. That means CP reduces the mean makespan by about
36.4%, 36.7%, 43% and 51.5% compared with ITAGS, Rounding,
GenDoc and Greedy, respectively. When calculating the offloading
scheme, CP will take the service caching conditions on each node
into account. Thus, compared with other benchmarks, CP will
make full use of the limited services on each node and achieve
lower makespan.

The results for homogeneous scenarios with different DAG
structures are shown in Fig. 9. Regardless of the proportion of the
deployed services, FS always achieves lower makespan compared
with the other algorithms. For example, when the value of Ω is
0.2 in Fig. 9(b), FS reduces the mean makespan by about 13.1%,
27.1%, 27.1%, 36.9% and 44.9% compared with CP, GenDoc,

ITAGS, Rounding and Greedy, respectively. Besides, GenDoc
performs better than ITAGS in homogeneous scenarios, especially
when the value of Ω increases.
Impact of the Communication-to-Computation Ratio on
Makespan: The fifth set of simulations evaluates the mean
makespan by changing the communication-to-computation ratio.
Specifically, we investigate the impact of inter-nodes commu-
nication time on mean makespan. As the communication-to-
computation ratio increases, the communication delay will much
impact the mean makespan. The results are shown in Figs. 10-11.
Fig. 10 presents mean makespan under different communication-
to-computation ratio for homogeneous scenarios with different
DAG structures and CP always achieves the minimum makespan.
For example, when the ratio is 0.2 in the GE structure, CP
can reduce the mean makespan by about 29%, 34%, 36% and
52% compared with ITAGS, GenDoc, Rounding and Greedy,
respectively.

The impact of the communication-to-computation ratio on
makespan for homogeneous scenarios is shown in Fig. 11.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:42:32 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3076687, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL., NO., APR 2021 14

 0

 4

 8

 12

 16

 20

5 10 20 30 40

M
ea

n
 M

ak
es

p
an

 (
×

 1
0

 3
)

Number of Edge Nodes

Greedy
Rounding

GenDoc
ITAGS

CP

(a) for the GE Structure.

 0

 3

 6

 9

 12

5 10 20 30 40

M
ea

n
 M

ak
es

p
an

 (
×

 1
0

 3
)

Number of Edge Nodes

Greedy
Rounding

GenDoc
ITAGS

CP

(b) for the FFT Structure.

Fig. 12: Mean Makespan vs. Number of Edge Nodes for Heteroge-
neous Scenario.

 0

 1

 2

 3

 4

 5

5 10 20 30 40

M
ea

n
 M

ak
es

p
an

 (
×

 1
0

 3
)

Number of Edge Nodes

Greedy
Rounding

ITAGS
GenDoc

CP
FS

(a) for the GE Structure.

 0

 1

 2

 3

 4

5 10 20 30 40

M
ea

n
 M

ak
es

p
an

 (
×

 1
0

 3
)

Number of Edge Nodes

Greedy
Rounding

ITAGS
GenDoc

CP
FS

(b) for the FFT Structure.

Fig. 13: Mean Makespan vs. Number of Edge Nodes for Homoge-
neous Scenario.

FS achieves minimum makespan than other algorithms all the
time and GenDoc performs better as the communication-to-
computation ratio increases. That is because GenDoc may place
one task on multiple edge nodes to avoid the communication
overhead.
Impact of the Number of Edge Nodes on Makespan: The last
set of simulations illustrates the impact of the number of edge
nodes on mean makespan. As shown in Figs. 12-13, with the
increasing number of available edge nodes, the mean makespan
of all tasks decreases for all algorithms. That is because more
edge nodes can provide more computing resources for tasks.
For heterogeneous scenarios, CP achieves less mean makespan
than the other algorithms. For example, when there are 20 edge
nodes with the GE structure, CP reduces the mean makespan by
about 26%, 34%, 38% and 52% compared with GenDoc, ITAGS,
Rounding and Greedy, respectively. Fig. 13 shows the results for
homogeneous scenarios. Regardless of the number of edge nodes
in MEC, FS always gets the smaller mean makespan than other
algorithms. For example, when there are 10 edge nodes with the
FFT structure in MEC, FS can reduce the mean makespan by
about 10%, 17%, 18%, 28% and 40% compared with CP, GenDoc,
ITAGS, Rounding and Greedy, respectively. By obtaining the
favorite successor for each potential node, FS can achieve better
makespan performance than other algorithms.

From these simulation results, we can draw some conclu-
sions. First, CP reduces the mean makespan by about 21-47%
compared with the other algorithms in heterogeneous scenarios.
Second, FS can achieve better performance than CP and reduce
mean makespan by about 20-45% compared with the other al-
ternatives in homogeneous scenarios. Third, our proposed CP/FS
substantially outperform other algorithms, over a wide range
of parameters including the number of tasks, the value of Ω,
the communication-to-computation ratio and the number of edge
nodes.

6.4 Small-Scale Testbed
Implementation: The prototype system consists of one central
controller, four edge nodes, one local device and one remote cloud,
as shown in Fig. 14. The central controller, running on a server
with a core i9-10900 processor, 64GB RAM, 2TB hard disk and
up to 1900Mbps wireless NIC, executes the proposed algorithms
to determine the task placement and scheduling scheme. To solve
the convex programming problems on the central controller, we

Edge Nodes

Remote

Cloud

Local Device

Router

Fig. 14: Prototype System

 250

 300

 350

 400

 450

FS CP GenDoc ITAGS Rounding Greedy

M
ak

es
p
an

 (
s)

Offloading Algorithms

Fig. 15: Makespans of Different
Offloading Algorithms

embed the API provided by CPLEX 12.3. The local device,
running on a server with a core i5-3470 processor, 8GB RAM,
1TB hard disk and up to 1900Mbps wireless NIC, caches all the
task requests. For the four servers who are performing the edge
nodes, each of them has an Intel i7-8700 CPU, 16GB RAM, 1TB
hard disk and up to 1900Mbps wireless NIC. We use a server
equipped with a core i9-10900 processor, 64GB RAM, 2TB hard
disk and up to 1900Mbps wireless NIC as the remote cloud. All
seven servers are connected through a 3200Mbps router. Note that,
in order to estimate the high communication delay between the
remote cloud and the local device (or edge nodes), we place the
server that acts as the remote cloud far away from the router. Due
to the different distance and random noise between these servers
and the router, the actual-measured network speed limit between
the five servers (acting as edge nodes and the local device) is
between 5-13.5 MB/s, while the actual-measured network speed
limit between the server acting as the remote cloud and other
nodes is between 0.6-2.7 MB/s. To run tasks, we install Hadoop
3.3.0 on our testbed.
Experimental Inputs and Results: We run three Word-Counting
applications simultaneously with input size of 1GB, 2GB, and
3GB, respectively on our testbed in Hadoop 3.3.0. Each of the
applications consists of several mappers and reducers. Apparently,
every reducer can start only after its corresponding mappers
complete, which indicates the inherent dependence. In order to
simulate the service caching constraints, only 2 edge nodes and
the remote cloud can execute mappers.

In the experiment, we run CP, FS, GenDoc, ITAGS, Rounding
and Greedy on the testbed and record the makespan perfor-
mance. The makespans of different algorithms are shown in Fig.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:42:32 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3076687, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL., NO., APR 2021 15

15. We observe that CP can reduce makespan by about 7.5%,
16.4%, 20.5%, 21.8% and 20.7% compared with FS, GenDoc,
ITAGS, Rounding and Greedy, respectively. Note that, for the
completeness of experiments, we run the FS algorithm in this
heterogeneous scenario. The experimental results show that our
CP algorithm performs better in the heterogeneous scenario than
other algorithms including FS. In addition, due to the small scale
of the experiment, the percentages of performance improvement of
our algorithms are smaller than the performance improvement in
large-scale scenarios. Through the experimental results, we believe
that our proposed algorithms can achieve satisfactory performance
in real scenarios.

7 CONCLUSION

In this paper, we have studied the problem of offloading dependent
tasks with service caching to minimize the makespan (ODT-SC).
We have proved that there exists no constant approximation algo-
rithm for ODT-SC. A convex programming based algorithm has
been designed to solve this problem. Moreover, we have studied
the special case for the ODT-SC problem (i.e., homogeneous
scenario) and proposed an approximate algorithm with bounded
approximation factor to solve this practical case. Extensive sim-
ulation results have shown the high efficiency of our proposed
algorithms.

REFERENCES

[1] G. Zhao, H. Xu, Y. Zhao, C. Qiao, and L. Huang, “Offloading dependent
tasks in mobile edge computing with service caching,” in Proc. IEEE
INFOCOM, 2020, pp. 1–10.

[2] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[3] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading for
mobile edge computing in dense networks,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications. IEEE, 2018, pp. 207–
215.

[4] Y. Abe, R. Geambasu, K. Joshi, H. A. Lagar-Cavilla, and M. Satya-
narayanan, “vtube: efficient streaming of virtual appliances over last-
mile networks,” in Proceedings of the 4th annual Symposium on Cloud
Computing. ACM, 2013, p. 16.

[5] T. Ouyang, R. Li, X. Chen, Z. Zhou, and X. Tang, “Adaptive user-
managed service placement for mobile edge computing: An online learn-
ing approach,” in IEEE INFOCOM 2019-IEEE Conference on Computer
Communications. IEEE, 2019, pp. 1468–1476.

[6] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646,
2016.

[7] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading and resource
allocation for computation and communication in mobile cloud with
computing access point,” in IEEE INFOCOM 2017-IEEE Conference
on Computer Communications. IEEE, 2017, pp. 1–9.

[8] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE Journal on Selected Areas
in Communications, vol. 36, no. 3, pp. 587–597, 2018.

[9] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge com-
puting: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1, pp.
450–465, 2017.

[10] Y. Mao, J. Zhang, and K. B. Letaief, “Joint task offloading scheduling and
transmit power allocation for mobile-edge computing systems,” in 2017
IEEE Wireless Communications and Networking Conference (WCNC).
IEEE, 2017, pp. 1–6.

[11] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for
mobile computing,” in IEEE INFOCOM 2016-The 35th Annual IEEE
International Conference on Computer Communications. IEEE, 2016,
pp. 1–9.

[12] S. Bi, L. Huang, and Y.-J. A. Zhang, “Joint optimization of service
caching placement and computation offloading in mobile edge computing
system,” arXiv preprint arXiv:1906.00711, 2019.

[13] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face recog-
nition: A literature survey,” ACM computing surveys (CSUR), vol. 35,
no. 4, pp. 399–458, 2003.

[14] S. Sundar and B. Liang, “Offloading dependent tasks with communi-
cation delay and deadline constraint,” in IEEE INFOCOM 2018-IEEE
Conference on Computer Communications. IEEE, 2018, pp. 37–45.

[15] S. Pasteris, S. Wang, M. Herbster, and T. He, “Service placement
with provable guarantees in heterogeneous edge computing systems,” in
IEEE INFOCOM 2019-IEEE Conference on Computer Communications.
IEEE, 2019, pp. 514–522.

[16] V. Farhadi, F. Mehmeti, T. He, T. La Porta, H. Khamfroush, S. Wang, and
K. S. Chan, “Service placement and request scheduling for data-intensive
applications in edge clouds,” in IEEE INFOCOM 2019-IEEE Conference
on Computer Communications. IEEE, 2019, pp. 1279–1287.

[17] N. Eshraghi and B. Liang, “Joint offloading decision and resource allo-
cation with uncertain task computing requirement,” in IEEE INFOCOM
2019-IEEE Conference on Computer Communications. IEEE, 2019, pp.
1414–1422.

[18] Z. Meng, H. Xu, L. Huang, P. Xi, and S. Yang, “Achieving energy effi-
ciency through dynamic computing offloading in mobile edge-clouds,” in
2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor
Systems (MASS). IEEE, 2018, pp. 175–183.

[19] Y.-H. Kao, B. Krishnamachari, M.-R. Ra, and F. Bai, “Hermes: Latency
optimal task assignment for resource-constrained mobile computing,”
IEEE Transactions on Mobile Computing, vol. 16, no. 11, pp. 3056–
3069, 2017.

[20] Y. Fan, L. Zhai, and H. Wang, “Cost-efficient dependent task offloading
for multiusers,” IEEE Access, vol. 7, pp. 115 843–115 856, 2019.

[21] S. Bi, L. Huang, and Y. J. A. Zhang, “Joint optimization of service
caching placement and computation offloading in mobile edge computing
systems,” IEEE Transactions on Wireless Communications, vol. 19, no. 7,
pp. 4947–4963, 2020.

[22] L. Liu, H. Tan, S. H.-C. Jiang, Z. Han, X.-Y. Li, and H. Huang,
“Dependent task placement and scheduling with function configuration
in edge computing,” in Proceedings of the International Symposium on
Quality of Service. ACM, 2019, p. 20.

[23] H. Arabnejad and J. G. Barbosa, “List scheduling algorithm for het-
erogeneous systems by an optimistic cost table,” IEEE Transactions on
Parallel and Distributed Systems, vol. 25, no. 3, pp. 682–694, 2013.

[24] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace analysis,”
in Proceedings of the Third ACM Symposium on Cloud Computing.
ACM, 2012, p. 7.

[25] J. L. D. Neto, S.-Y. Yu, D. F. Macedo, J. M. S. Nogueira, R. Langar, and
S. Secci, “Uloof: a user level online offloading framework for mobile
edge computing,” IEEE Transactions on Mobile Computing, vol. 17,
no. 11, pp. 2660–2674, 2018.

[26] L. Huang, X. Feng, C. Zhang, L. Qian, and Y. Wu, “Deep reinforcement
learning-based joint task offloading and bandwidth allocation for multi-
user mobile edge computing,” Digital Communications and Networks,
vol. 5, no. 1, pp. 10–17, 2019.

[27] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “Mo-
bile edge computing: Survey and research outlook,” arXiv preprint
arXiv:1701.01090, 2017.

[28] “Alibaba trace,” https://github.com/alibaba/clusterdata.
[29] N. Chen, Y. Yang, T. Zhang, M.-T. Zhou, X. Luo, and J. K. Zao, “Fog as

a service technology,” IEEE Communications Magazine, vol. 56, no. 11,
pp. 95–101, 2018.

[30] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of
radio and computational resources for multicell mobile-edge computing,”
IEEE Transactions on Signal and Information Processing over Networks,
vol. 1, no. 2, pp. 89–103, 2015.

[31] Y. Mao, J. Zhang, S. Song, and K. B. Letaief, “Stochastic joint radio
and computational resource management for multi-user mobile-edge

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:42:32 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3076687, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL., NO., APR 2021 16

computing systems,” IEEE Transactions on Wireless Communications,
vol. 16, no. 9, pp. 5994–6009, 2017.

[32] J. Yan, S. Bi, Y. J. Zhang, and M. Tao, “Optimal task offloading
and resource allocation in mobile-edge computing with inter-user task
dependency,” IEEE Transactions on Wireless Communications, vol. 19,
no. 1, pp. 235–250, 2019.

[33] M. Dorigo and L. M. Gambardella, “Ant colonies for the travelling
salesman problem,” biosystems, vol. 43, no. 2, pp. 73–81, 1997.

[34] N. Christofides, “Worst-case analysis of a new heuristic for the travelling
salesman problem,” Carnegie-Mellon Univ Pittsburgh Pa Management
Sciences Research Group, Tech. Rep., 1976.

[35] S. Sahni and T. Gonzalez, “P-complete approximation problems,” Jour-
nal of the ACM (JACM), vol. 23, no. 3, pp. 555–565, 1976.

[36] S. Mitchell, M. OSullivan, and I. Dunning, “Pulp: a linear programming
toolkit for python,” The University of Auckland, Auckland, New Zealand,
2011.

[37] P. Raghavan and C. D. Tompson, “Randomized rounding: a technique
for provably good algorithms and algorithmic proofs,” Combinatorica,
vol. 7, no. 4, pp. 365–374, 1987.

[38] I. I. CPLEX, “V12. 1: User’s Manual for CPLEX,” International Busi-
ness Machines Corporation, vol. 46, no. 53, p. 157, 2009.

[39] Y. Zhao, M. Pithapur, and C. Qiao, “On progressive recovery in interde-
pendent cyber physical systems,” in 2016 IEEE Global Communications
Conference (GLOBECOM). IEEE, 2016, pp. 1–6.

[40] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 1, pp. 856–868, 2018.

[41] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[42] E. Ahmed, A. Gani, M. K. Khan, R. Buyya, and S. U. Khan, “Seamless
application execution in mobile cloud computing: Motivation, taxonomy,
and open challenges,” Journal of Network and Computer Applications,
vol. 52, pp. 154–172, 2015.

[43] C. Hanen and A. Munier, “An approximation algorithm for scheduling
dependent tasks on m processors with small communication delays,”
Discrete Applied Mathematics, vol. 108, no. 3, pp. 239–257, 2001.

[44] H. Casanova, A. Legrand, and Y. Robert, Parallel algorithms. Chapman
and Hall/CRC, 2008.

[45] O. Sinnen, Task scheduling for parallel systems. John Wiley & Sons,
2007, vol. 60.

[46] A. K. Amoura, E. Bampis, and J.-C. Konig, “Scheduling algorithms for
parallel gaussian elimination with communication costs,” IEEE Trans-
actions on Parallel and Distributed systems, vol. 9, no. 7, pp. 679–686,
1998.

[47] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
transactions on parallel and distributed systems, vol. 13, no. 3, pp. 260–
274, 2002.

[48] H. Tan, Z. Han, X.-Y. Li, and F. C. Lau, “Online job dispatching and
scheduling in edge-clouds,” in IEEE INFOCOM 2017-IEEE Conference
on Computer Communications. IEEE, 2017, pp. 1–9.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:42:32 UTC from IEEE Xplore. Restrictions apply.

